FINAL STORM DRAINAGE REPORT

FOR

Cheshire Short Plat Lot 1

CITY OF MERCER ISLAND, WASHINGTON

8/31/22

Prepared by: Christian R. Vanderhoeven, E.I.T.

Approved by: Sheri H. Murata, P.E.

Date: July 19, 2021

August 31, 2022

Core No.: 19205

12100 NE 195th Street, Suite 300 Bothell, Washington 98011 Ph 425.885.7877 www.coredesigninc.com

Table of Contents

SECTION 1.	PROJECT OVERVIEW	1
Figure 1	.1: Vicinity Map	1
SECTION 2.	CONDITIONS AND REQUIREMENTS SUMMARY	2
2.1 Minim	um Requirements	2
2.1.1 M	inimum Requirement #1: Preparation of Stormwater Site Plans	2
2.1.2 M	inimum Requirement #2: Construction Stormwater Pollution Prevention	2
2.1.3 M	inimum Requirement #3: Source Control of Pollution	2
2.1.4 M	inimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls	2
2.1.5 M	inimum Requirements #5: On-site Stormwater Management	2
SECTION 3.	OFFSITE ANALYSIS	5
Summary.		5
Field Inves	tigation	5
Drainage S	System Description	5
SECTION 4.	FLOW CONTROL AND WATER QUALITY DESIGN	7
4.1 Existin	g Conditions	7
4.2 Develo	ped Conditions	7
4.3 Detent	ion Facility Sizing	8
4.4 Water	Quality Exemption	8
SECTION 5.	CONVEYANCE SYSTEM ANALYSIS AND DESIGN	10
SECTION 6.	SPECIAL REPORTS AND STUDIES	11
SECTION 7.	OTHER PERMITS	12
SECTION 8.	CSWPPP ANALYSIS AND DESIGN	13
SECTION 9.	BOND QUANTITIES, FACILITY SUMMARIES, AND DECLARATION OF COVENANT	15
9.1 Bond (Quantities	15
9.2 Facility	Summaries	15
9.3 Declar	ation of Covenant	15
SECTION 10.	OPERATIONS AND MAINTENANCE	16
Appendix A		17

SECTION 1. PROJECT OVERVIEW

The project site is located at 7615 E Mercer Way in the city of Mercer Island. Specifically, the project is located on Section 30, Township 24, Range 5. The site is bordered by single family residentials to the north, south, and west and E Mercer Way to the east. The King County tax parcel ID number is 3024059036.

Proposed development of the property will include subdivision of the parcel into two separate lots. The scope of the project will solely include construction activities on the eastern lot. The lot area is 11,154 SF (0.26 ac). Development proposes a new building, driveway, and associated utilities.

The project will be designed using the guidelines and requirements established in the 2012 Department of Ecology Stormwater Management Manual for Western Washington as amended in December 2014 (2014 SWMMWW). This project will be adding less than 5,000 square feet of new pollution generating impervious surface (PGIS) so water quality treatment will not be required or proposed. See Figure 1.1 Vicinity Map below.

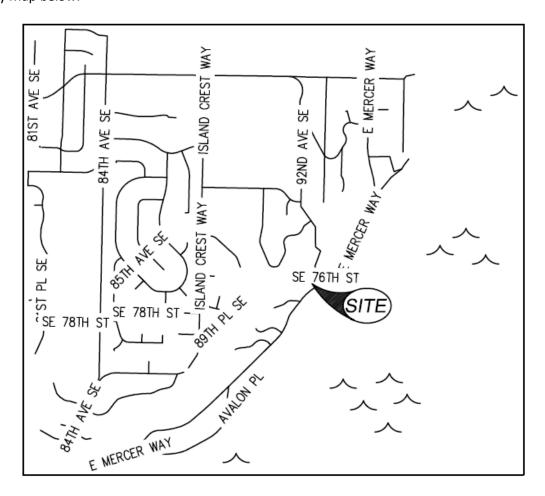


Figure 1.1: Vicinity Map

King County Department of Assessments

Setting values, serving the community, and promoting fairness and equity.

Department of Assessments

201 South Jackson Street, Room 708 Seattle, WA 98104

Office Hours: Mon - Fri 8:30 a.m. to 4:30 p.m.

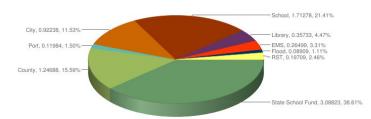
TEL: 206-296-7300 FAX: 206-296-5107 TTY: 206-296-7888

Send us mail

ADVERTISEMENT

- New Search Property Tax Bill Map This Property Glossary of Terms

- Area Report Property Detail


Parcel Number	302405-9036			
Name	CHESHIRE DEREK L+EILEEN L			
Site Address	7615 E MERCER WAY 98040			
Legal	N 148.375 FT OF GL 6 LESS W 1000 FT & N 148.375 FT OF GL 5 LY WLY OF E MERCER WAY			
BUILDING 1				

1970 ?

1970 2660
2660
12000
4
1.75
8 Good
Good
92347
No

TOTAL LEVY RATE DISTRIBUTION

Tax Year: 2021 Levy Code: 1031 Total Levy Rate: \$7.99861 Total Senior Rate: \$4.86937

47.05% Voter Approved

Click here to see levy distribution comparison by year.

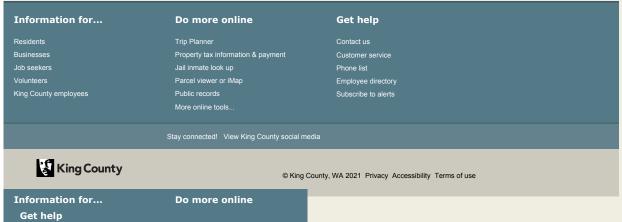
TAX ROLL HISTORY

Valued Year	Tax Year	Appraised Land Value (\$)	Appraised Imps Value (\$)	Appraised Total (\$)	Appraised Imps Increase (\$)	Taxable Land Value (\$)	Taxable Imps Value (\$)	Taxable Total (\$)
2021	2022	1,709,000	547,000	2,256,000	0	1,709,000	547,000	2,256,000
2020	2021	1,628,000	411,000	2,039,000	0	1,628,000	411,000	2,039,000
2019	2020	1,536,000	398,000	1,934,000	377,000	1,536,000	398,000	1,934,000
2018	2019	1,506,000	10,000	1,516,000	0	1,506,000	10,000	1,516,000
2017	2018	1,362,000	10,000	1,372,000	0	1,362,000	10,000	1,372,000
2016	2017	1,245,000	10,000	1,255,000	0	1,245,000	10,000	1,255,000
2015	2016	1,127,000	10,000	1,137,000	0	1,127,000	10,000	1,137,000
2014	2015	1,042,000	10,000	1,052,000	0	1,042,000	10,000	1,052,000
2013	2014	955,000	72,000	1,027,000	0	955,000	72,000	1,027,000
2012	2013	881,000	66,000	947,000	0	881,000	66,000	947,000
2011	2012	927,000	8,000	935,000	0	927,000	8,000	935,000
2010	2011	971,000	9,000	980,000	0	971,000	9,000	980,000
2009	2010	1,000,000	9,000	1,009,000	0	1,000,000	9,000	1,009,000
2008	2009	1,240,000	10,000	1,250,000	0	1,240,000	10,000	1,250,000
2007	2008	805,000	90,000	895,000	0	805,000	90,000	895,000
2006	2007	719,000	79,000	798,000	0	719,000	79,000	798,000
2005	2006	719,000	153,000	872,000	0	719,000	153,000	872,000
2004	2005	660,000	134,000	794,000	0	660,000	134,000	794,000
2003	2004	660,000	134,000	794,000	0	660,000	134,000	794,000

Reference Links:

- King County Taxing Districts Codes and Levies (.PDF)
- King County Tax Links
- Property Tax Advisor
- Washington State
 Department of
 Revenue (External link)
- Washington State Board of Tax Appeals (External link)
- Board of Appeals/Equalization
- Districts Report
- o iMap
- Recorder's Office

Scanned images of surveys and other map documents


ADVERTISEMENT Notice mailing date: 06/03/2021

2002	2003	660,000	134,000	794,000	0	660,000	134,000	794,000
2001	2002	526,000	119,000	645,000	0	526,000	119,000	645,000
2000	2001	458,000	53,000	511,000	0	458,000	53,000	511,000
1999	2000	367,000	119,000	486,000	0	367,000	119,000	486,000
1998	1999	350,000	96,000	446,000	0	350,000	96,000	446,000
1997	1998	0	0	0	0	218,000	134,000	352,000
1996	1997	0	0	0	0	200,000	108,000	308,000
1994	1995	0	0	0	0	200,000	108,000	308,000
1992	1993	0	0	0	0	215,600	128,400	344,000
1990	1991	0	0	0	0	220,000	131,000	351,000
1988	1989	0	0	0	0	129,600	72,500	202,100
1986	1987	0	0	0	0	129,600	65,400	195,000
1984	1985	0	0	0	0	120,000	73,600	193,600
1982	1983	0	0	0	0	120,000	73,600	193,600

ADVERTISEMENT

Updated: June 24, 2021

Share Tweet Email

SECTION 2. CONDITIONS AND REQUIREMENTS SUMMARY

The project site has less than 25% of existing impervious coverage, therefore the project is classified as a new development project. Per Figure 2.1 located at the end of this section, the proposed project will only have to address minimum requirements 1 through 5. The applicable minimum requirements and how the project proposes to address each are listed below.

2.1 Minimum Requirements

2.1.1 Minimum Requirement #1: Preparation of Stormwater Site Plans

Civil Plans submitted under separate cover and a Drainage Report herein have been prepared for the subject project.

2.1.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention

A SWPPP is not applicable to the project since there is less than 1 acre of land disturbance and the projects is not part of a larger common plan of development.

2.1.3 Minimum Requirement #3: Source Control of Pollution

The proposed construction is not a commercial project; therefore, this requirement does not apply.

2.1.4 Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls

The project will discharge to the existing conveyance system located on E Mercer Way, maintaining the natural discharge location for the site.

2.1.5 Minimum Requirements #5: On-site Stormwater Management

This project triggers minimum requirement 1 through 5 per the 2014 SWMMWW. The project elects to implement BMPs from List #1. A feasibility discussion of BMPs from list #1 can be found below.

List #1

Lawn and Landscaped areas:

- Post-Construction Soil Quality and Depth:
 - o BMP T5.13 will be implemented in accordance with the 2014 SWMMWW.

Roofs:

- Full Dispersion:
 - Full dispersion systems are infeasible due to inability to meet the flow path requirement of 100 feet of native vegetation.
- Downspout Full Infiltration:
 - Per the Geotechnical Report, "subsurface conditions are generally not favorable for infiltration of site stormwater. The native soils observed at the site contain a high percentage of soil fines that would impede any downward migration of site stormwater.
 Even low impact development (LID) techniques would likely fill up and overtop."
 Therefore, infiltration is considered infeasible.

- Rain Gardens:
 - Infiltration BMPs have been found infeasible according to the geotechnical report.
- Downspout Dispersion Systems:
 - Downspout dispersion systems are infeasible due to their inability to meet the flow path requirements.
- Perforated Stub-out Connections:
 - A perforated stub-out connection is feasible due to groundwater being found at a typical depth of 10 feet per the geotechnical report. The project will implement 10 feet of perforated pipe in a level 2-foot-wide trench backfilled with washed drain rock.

Other Hard Surfaces:

- Full Dispersion:
 - Full dispersion systems are infeasible due to being unable to meet the flow path requirement of 100 ft of native vegetation.
- Permeable pavement:
 - o Infiltration BMPs have been found infeasible according to the geotechnical report.
- Rain gardens:
 - o Infiltration BMPs have been found infeasible according to the geotechnical report.
- Bioretention:
 - o Infiltration BMPs have been found infeasible according to the geotechnical report.
- Sheet Flow Dispersion:
 - Sheet flow dispersion is not allowed per the pre app notes in the Civil Engineering Comments, "No sheet flow is allowed for this site".

SECTION 3. OFFSITE ANALYSIS

Summary

King County iMap was used to verify that the project site is not within a floodplain and that no drainage complaints have been filed along the downstream path. The City of Mercer Island maps for erosion and landslide hazard areas were consulted, and the project is located within an area of known or suspect to both erosion and landslides. A geotechnical report was consulted for site specific analysis. The Geotechnical report confirmed the site is located in an erosion hazard area and provided erosion and sediment control BMPs to implement to prevent and control erosion. The site is not located in a landslide hazard area. All resources reviewed can be found in Appendix A.

Field Investigation

The site contains a single-family residence and the rest of the site is covered in long grass with scattered trees. Currently, stormwater sheet flows to the east and southeast, towards E Mercer Way. Stormwater runoff leaves the site along the east property line and into the flow line along E Mercer Way flowing east. No existing or potential drainage issues were observed on site or along the downstream drainage path. Refer to the drainage description below.

Drainage System Description

The project site consistently drains from west to east at an average slope of 25%. All downstream runoff sheet flows eastward towards E Mercer Way. An existing conveyance system collects all flow at a catch basin located at the northeastern corner of the parcel at SE 76th Street and E Mercer Way. The runoff enters this catch basin and flows northeast for approximately 75 feet through the existing conveyance system along the west side of E Mercer Way. At this point, the flow path enters a catch basin which joins an east flowing unnamed creek via culvert. The flow continues east for approximately 147 feet where it briefly exits into an open water channel which flows southeast for 28 feet. Flow enters another culvert and meanders east by southeast for approximately 120 feet before reaching an outlet into an open water channel for 53 feet. The stream enters a final culvert which continues east for 65 feet until discharging directly into Lake Washington. See downstream map below for detail.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(o) Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

~

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

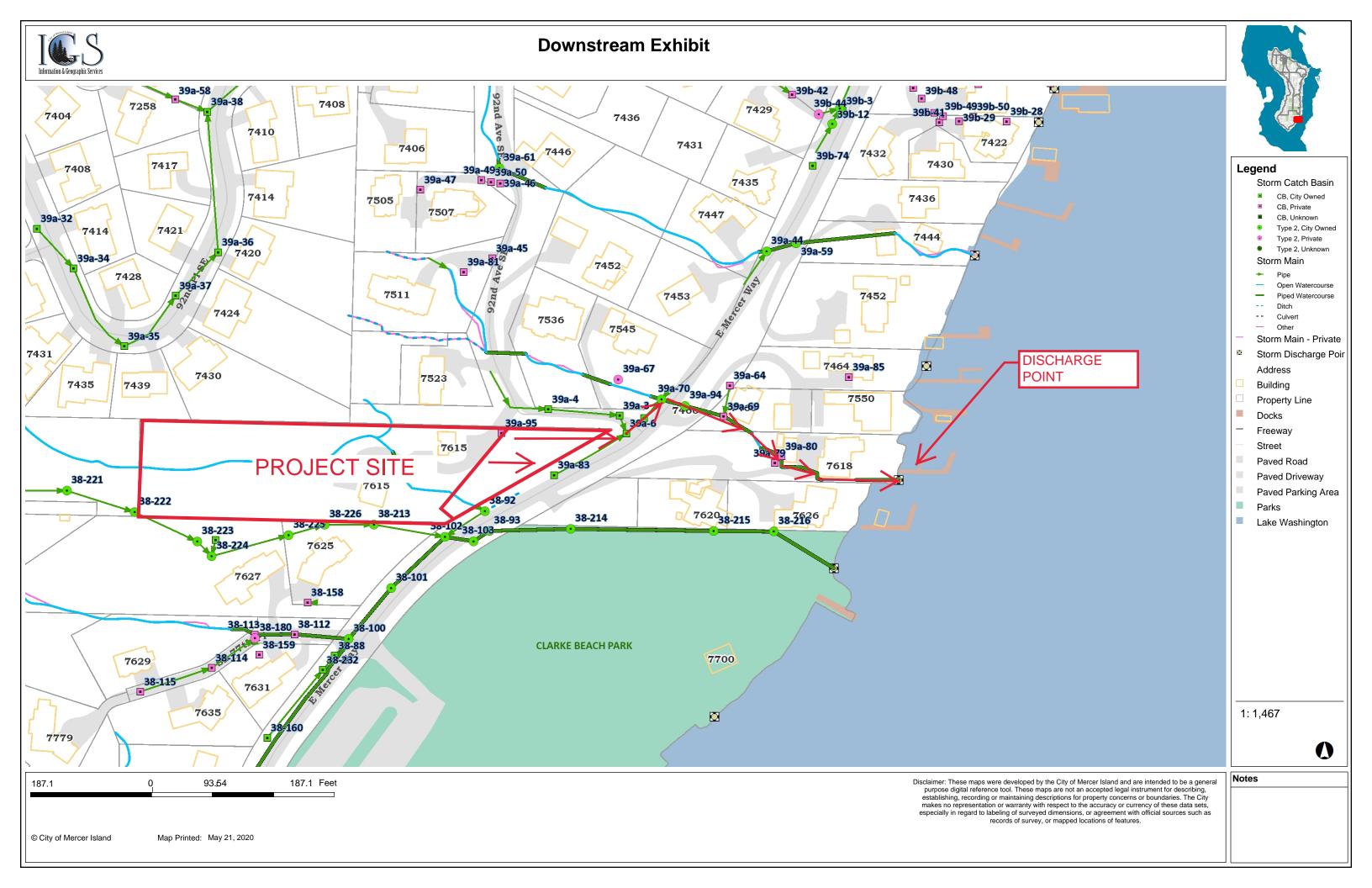
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: King County Area, Washington Survey Area Data: Version 16, Jun 4, 2020


Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jul 6, 2020—Jul 20, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
KpD	Kitsap silt loam, 15 to 30 percent slopes	0.5	100.0%
Totals for Area of Interest		0.5	100.0%

SECTION 4. FLOW CONTROL AND WATER QUALITY DESIGN

4.1 Existing Conditions

The existing site is undeveloped with pervious area consisting of forest cover with groups of trees scattered throughout. The overall site generally slopes from west to east at an average of 25% percent towards E Mercer Way. The existing areas are summarized below:

Table 4.1 – Existing Conditions

Surface Type	Area - SF (Acres)
Total Lot	11,154 (0.26)
Pervious (Till Forest)	11,154 (0.26)

4.2 Developed Conditions

The proposed project will consist of constructing a new single-family residence, associated driveway, walkways, and landscaping. SE 76th Street will serve as access road for the site and will connect to the proposed driveway. Forest cover beyond construction clearing limits will be retained. See table 4.2 for a summary of the proposed areas as part of the project.

Table 4.2 – Developed Conditions

Surface Type	Area - SF (Acres)
Total Lot	11,154 (0.26)
Impervious	3,159 (0.07)
Roof	1,834
Stairs/Front Porch	318
Driveway	968
Deck/Patio	309
Pervious (Landscape)	7,995 (0.18)

From Table 4.2, there will be greater than 2,000 SF of new plus replaced hard surface area and all BMPs for hard surfaces are determined to be infeasible. Onsite drainage will be discharged directly to Lake Washington. Therefore, the proposed project requires on-site detention.

4.3 Detention Facility Sizing

The project proposes less than 5,000 square feet of impervious surface and is exempt from the flow control requirement. According to the City of Mercer Island's Stormwater Management Standards. The project proposes on-site detention to attenuate flows rather than meet flow control standards.

The City of Mercer Island also provides their own guidance for the on-site detention requirement. The following list is used to determine if on-site detention is required:

On-site detention is required if the project:

- Results in 2,000 sf, or greater, of new plus replaced hard surface area, or
- Has a land disturbing activity of 7,000 sf or greater, or
- Results in a net increase of impervious surface of 500 sf or greater.

AND

- All of the on-site stormwater BMPs included on list #1 and #2 are determined to be infeasible for roofs and/or other hard surfaces, and
- Drainage from the site will be discharged to a storm and surface water system that includes a watercourse or there is a capacity constraint in the system.

The detention tank was sized according to the City of Mercer Island's Stormwater Management Standards. Due to the site having an impervious area between 3,001 and 4,000 square feet, the tank has a diameter 60-inches and a length of 26 feet. Also, the low orifice diameter was sized to be 0.5 inches, the distance between the outlet invert and second orifice was 3.9 feet with a 1.3-inch diameter for the second orifice. The detention tank sizing worksheet is included at the end of this section.

4.4 Water Quality Exemption

The project proposes less than 5,000 square feet of pollution-generating impervious surface; therefore, the project is exempt from providing a water quality treatment facility.

CITY OF MERCER ISLAND

DEVELOPMENT SERVICES GROUP

9611 SE 36TH STREET | MERCER ISLAND, WA 98040

PHONE: 206.275.7605 | www.mercergov.org

Inspection Requests: Online: www.MyBuildingPermits.com VM: 206.275.7730

ON-SITE DETENTION DESIGN REQUIREMENTS

General Requirements

This guidance applies only to projects that meet the thresholds specified below in "Is On-site Detention Required for My Project?" if all of the on-site stormwater BMPs included on List #1 and List #2 are determined to be infeasible for roofs and/or other hard surfaces.

Is On-site Detention Required For My Project?

YES, if my project:

- 1) Results in 2,000 square feet, or greater, of new plus replaced hard surface area, or
- 2) Has a land disturbing activity or 7,000 square feet or greater, or
- 3) Results in a *net increase* of impervious surface of 500 square feet or greater.

AND

- 1) All of the on-site stormwater BMPs included on List #1 and List #2 are determined to be infeasible for roofs and/or other hard surfaces, and
- 2) Drainage from the site will be discharged to a storm and surface water system that includes a watercourse or there is a capacity constraint in the system.

NO, if my project:

- 1) Results in less than 2,000 square feet of new plus replaced hard surface area, and
- 2) Has a land disturbing activity less than 7,000 square feet, and
- 3) Results in a **net increase of less than 500 square feet** of impervious surface area.
- 4) The project discharges *directly* to Lake Washington, or findings from a ¼-mile downstream analysis confirm that the downstream system is free of capacity constraints.

Designing Your On-Site Detention System

All on-site detention system designs must be prepared by a professional engineer registered in the State of Washington. The Standard On-site Detention System worksheet (Attachment 1) must be submitted on 18" x 24" (minimum) size sheets.

Construction that results in 500 to 9,500 square feet of new plus replaced impervious surfaces: Size system according to Table 1. The configuration of the on-site detention system shall be as shown on Attachment 1 (Standard On-Site Detention Systems Worksheet) or as specifically designed by the engineer for the site.

Note:

- The applicant may pay a fee-in-lieu-of constructing an on-site detention system when allowed by the
 City Engineer. The fee will not be an option when in the opinion of the City Engineer, undetained
 runoff from the development may adversely exacerbate an existing problem (MICC 15.11) or if flow
 control is required by Minimum Requirement #7.
- Construction that results in more than 9,500 square feet of new plus replaced impervious surfaces and/or exceeds a 100-year flow frequency of 0.15 cubic feet per second (for moderate and steep sloped sites greater than a 5% slope): Size system according to Minimum Requirement #7 (Flow Control) in the Stormwater Management Manual for Western Washington (Ecology 2014).

Last updated 1-26-18

 Table 1

 ON-SITE DETENTION DESIGN FOR PROJECTS BETWEEN 500 SF AND 9,500 SF NEW PLUS REPLACED IMPERVIOUS SURFACE AREA

November of Bondard			on Pipe	Lowest Orifice Diameter (in) ⁽³⁾		Distance from Outlet Invert to Second Orifice (ft)		Second Orifice Diameter (in)	
New and Replaced	Datautian Dina	Lengt	n (It)	Diamet	er (in)	to Second	Orifice (ft)	Diame	ter (in)
Impervious Surface Area (sf)	Detention Pipe Diameter (in)	B soils	C soils	B soils	C soils	B soils	C soils	B soils	C soils
	36"	30	22	0.5	0.5	2.2	2.0	0.5	0.8
500 to 1,000 sf	48"	18	11	0.5	0.5	3.3	3.2	0.9	0.8
	60"	11	7	0.5	0.5	4.2	3.4	0.5	0.6
	36"	66	43	0.5	0.5	2.2	2.3	0.9	1.4
1,001 to 2,000 sf	48"	34	23	0.5	0.5	3.2	3.3	0.9	1.2
	60"	22	14	0.5	0.5	4.3	3.6	0.9	0.9
	36"	90	66	0.5	0.5	2.2	2.4	0.9	1.9
2,001 to 3,000 sf	48"	48	36	0.5	0.5	3.1	2.8	0.9	1.5
	60"	30	20	0.5	0.5	4.2	3.7	0.9	1.1
	36"	120	78	0.5	0.5	2.4	2.2	1.4	1.6
3,001 to 4,000 sf	48"	62	42	0.5	0.5	2.8	2.9	0.8	1.3
	60"	42	26	0.5	0.5	3.8	3.9	0.9	1.3
	36"	134	91	0.5	0.5	2.8	2.2	1.7	1.5
4,001 to 5,000 sf	48"	73	49	0.5	0.5	3.6	2.9	1.6	1.5
	60"	46	31	0.5	0.5	4.6	3.5	1.6	1.3
	36"	162	109	0.5	0.5	2.7	2.2	1.8	1.6
5,001 to 6,000 sf	48"	90	59	0.5	0.5	3.5	2.9	1.7	1.5
	60"	54	37	0.5	0.5	4.6	3.6	1.6	1.4
	36"	192	128	0.5	0.5	2.7	2.2	1.9	1.8
6,001 to 7,000 sf	48"	102	68	0.5	0.5	3.7	2.9	1.9	1.6
	60"	64	43	0.5	0.5	4.6	3.6	1.8	1.5
	36"	216	146	0.5	0.5	2.8	2.2	2.0	1.9
7,001 to 8,000 sf	48"	119	79	0.5	0.5	3.8	2.9	2.2	1.7
	60"	73	49	0.5	0.5	4.5	3.6	2.0	1.6
	36"	228	155	0.5	0.5	2.8	2.2	2.1	1.9
8,001 to 8,500 sf ⁽¹⁾	48"	124	84	0.5	0.5	3.7	2.9	1.9	1.8
	60"	77	53	0.5	0.5	4.6	3.6	2.0	1.6
	36"	NA ⁽¹⁾	164	0.5	0.5	NA ⁽¹⁾	2.2	NA ⁽¹⁾	1.9
8,501 to 9,000 sf	48"	NA ⁽¹⁾	89	0.5	0.5	NA ⁽¹⁾	2.9	NA ⁽¹⁾	1.9
	60"	NA ⁽¹⁾	55	0.5	0.5	NA ⁽¹⁾	3.6	NA ⁽¹⁾	1.7
	36"	NA ⁽¹⁾	174	0.5	0.5	NA ⁽¹⁾	2.2	NA ⁽¹⁾	2.1
9,001 to 9,500 sf ⁽²⁾	48"	NA ⁽¹⁾	94	0.5	0.5	NA ⁽¹⁾	2.9	NA ⁽¹⁾	2.0
	60"	NA ⁽¹⁾	58	0.5	0.5	NA ⁽¹⁾	3.7	NA ⁽¹⁾	1.7

Notes:

- Minimum Requirement #7 (Flow Control) is required when the 100-year flow frequency causes a 0.15 cubic feet per second increase (when modeled in WWHM with a 15-minute timestep). Breakpoints shown in this table are based on a flat slope (0-5%). The 100-year flow frequency will need to be evaluated on a site-specific basis for projects on moderate (5-15%) or steep (> 15%) slopes.
- Soil type to be determined by geotechnical analysis or soil map.
- Sizing includes a Volume Correction Factor of 120%.
- Upper bound contributing area used for sizing.
- ⁽¹⁾ On Type B soils, new plus replaced impervious surface areas exceeding 8,500 sf trigger Minimum Requirement #7 (Flow Control)
- ⁽²⁾ On Type C soils, new plus replaced impervious surface areas exceeding 9,500 sf trigger Minimum Requirement #7 (Flow Control)
- (3) Minimum orifice diameter = 0.5 inches

in = inch

ft = feet

sf = square feet

Basis of Sizing Assumptions:

Sized per MR#5 in the Stormwater Management Manual for

Puget Sound Basin (1992 Ecology Manual)

SBUH, Type 1A, 24-hour hydrograph

2-year, 24-hour storm = 2 in; 10-year, 24-hour

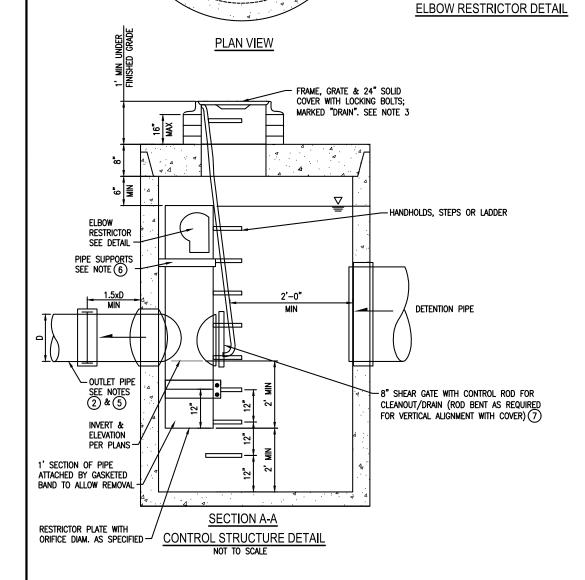
storm = 3 in; 100-year, 24-hour storm = 4 in

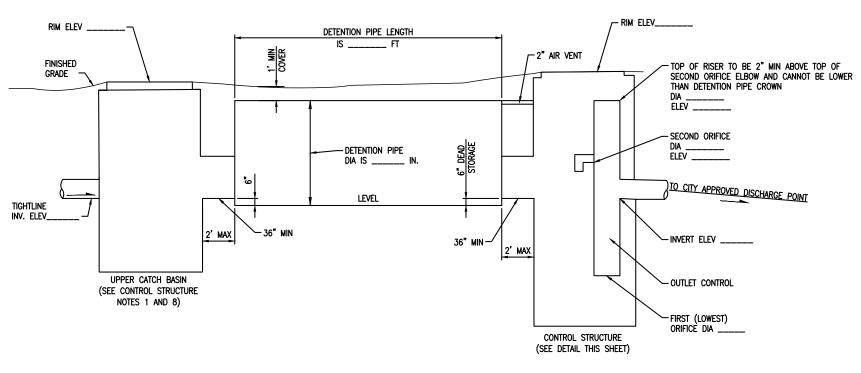
Predeveloped = second growth forest (CN = 72 for Type B

soils, CN = 81 for Type C soils)

Developed = impervious (CN = 98)

0.5 foot of sediment storage in detention pipe


Overland slope = 5%


Last updated 1-26-18 2

2' MIN. CLEARANCE TO ANY PORTION OF FROP-T INCL. ELBOWS REMOVABLE WATERTIGHT COUPLING OR FLANGE -- Plate Welded to Elbow WITH ORIFICE AS SPECIFIED ELBOW RESTRICTOR SEE DETAIL

ATTACHMENT 1 CITY OF MERCER ISLAND ON-SITE DETENTION SYSTEM WORKSHEET (FOR NEW PLUS REPLACED IMPERVIOUS AREA OF 9,500 SF OR LESS)

> ADDRESS: __ PREPARED BY: __ PHONE: PERMIT #: NEW PLUS REPLACED IMPERVIOUS DETENTION DETENTION SURFACE AREA (SF): ___ PIPE DIA (INCH): __ PIPE LENGTH (FT): ORIFICE #1 DIA ____ INCH, ELEV __ ORIFICE #2 DIA ____ INCH, ELEV __ PIPE MATERIAL: __

ON-SITE DETENTION SYSTEM NOT TO SCALE (ENGINEER TO FILL IN BLANKS)

CONTROL STRUCTURE NOTES:

- (1) USE A MINIMUM OF A 54 IN. DIAM. TYPE 2 CATCH BASIN. THE ACTUAL SIZE IS DEPENDENT ON CONNECTING PIPE MATERIAL AND DIAMETER.
- 2) OUTLET PIPE: MIN. 6 INCH.
- 3 METAL PARTS: CORROSION RESISTANT. NON-GALVANIZED PARTS PREFERRED. GALVANIZED PIPE PARTS TO HAVE ASPHALT TREATMENT 1.
- (4) FRAME AND LADDER OR STEPS OFFSET SO:

 - A. CLEANOUT GATE IS VISIBLE FROM TOP; B. CLIMB-DOWN SPACE IS CLEAR OF RISER AND CLEANOUT GATE;
 - C. FRAME IS CLEAR OF CURB.
- (5) IF METAL OUTLET PIPE CONNECTS TO CEMENT CONCRETE PIPE, OUTLET PIPE TO HAVE SMOOTH O.D. EQUAL TO CONCRETE PIPE I.D. LESS 1/4 IN.
- PROVIDE AT LEAST ONE 3 X 0.090 GAUGE SUPPORT BRACKET ANCHORED TO CONCRETE WALL WITH 5/8 IN. STANLESS STEEL EXPANSION BOLTS OR EMBEDDED SUPPORTS 2 IN. INTO CATCH BASIN WALL (MAXIMUM 3'-0"
- THE SHEAR GATE SHALL BE MADE OF ALUMINUM ALLOY IN ACCORDANCE WITH ASTM B 26M AND ASTM B 275, DESIGNATION ZG32A; OR CAST IRON IN ACCORDANCE WITH ASTM A 48, CLASS 30B. THE LIFT HANDLE SHALL BE MADE OF A SIMILAR METAL TO THE GATE (TO PREVENT GALVANIC CORROSION), IT MAY BE OF SOLID ROD OR HOLLOW TUBING, WITH ADJUSTABLE HOOK AS REQUIRED.

 A NEOPRENE RUBBER GASKET IS REQUIRED BETWEEN THE RISER MOUNTING FLANGE AND THE GATE FLANGE. INSTALL THE GATE SO THAT THE LEVEL-LINE MARK IS LEVEL WHEN THE GATE IS CLOSED. THE MATING SURFACES OF THE LID AND THE BODY SHALL BE MACHINED FOR PROPER FIT. ALL SHEAR GATE BOLTS SHALL BE STAINLESS STEEL.
- THE UPPER CATCH BASIN IS REQUIRED IF THE LENGTH OF THE DETENTION PIPE IS GREATER THAN 50 FT.

ON-SITE DETENTION SYSTEM NOTES:

- 1. CALL DEVELOPMENT SERVICES (206-275-7605) 24 HOURS IN ADVANCE FOR A DETENTION SYSTEM INSPECTION BEFORE BACKFILLING AND FOR FINAL INSPECTIONS.
- RESPONSIBILITY FOR OPERATION AND MAINTANANCE OF DRAINAGE SYSTEMS ON PRIVATE PROPERTY IS RESPONSIBILITY OF THE PROPERTY OWNER. MATERIAL ACCUMULATED IN THE STORAGE PIPE MUST BE REMOVED FROM CATCH BASINS TO ALLOW PROPER OPERATION. THE OUTLET CONTROL ORIFICE MUST BE KEPT OPEN AT ALL TIMES.
- 3. PIPE MATERIAL, JOINT, AND PROTECTIVE TREATMENT SHALL BE IN ACCORDANCE WITH SECTION 7.04 AND 9.05 OF THE WSDOT STANDARD SPECIFICATION FOR ROAD, BRIDGE, AND MUNICIPAL CONSTRUCTION, LATEST VERSION. SUCH MATERIALS INCLUDE THE FOLLOWING, LINED CORRUGATED POLYETHYLENE PIPE (LCPE), ALUMINIZED TYPE 2 CORRUGATED STEEL PIPE AND PIPE ARCH (MEETS AASHTO DESIGNATIONS M274 AND M36), CORRUGATED OR SPIRAL RIB ALUMINUM PIPE, OR REINFORCED CONCRETE PIPE. CORRUGATED STEEL PIPE IS NOT ALLOWED.
- 4. FOOTING DRAINS SHALL NOT BE CONNECTED TO THE DETENTION SYSTEM.

SECTION 5.CONVEYANCE SYSTEM ANALYSIS AND DESIGN

A conveyance system will be constructed as part of the project to discharge stormwater runoff from the site to the downstream connection point. Manning's equation is used to determine the size of the conveyance pipes.

Using Manning's equation:

$$Q = \frac{k}{n} A R_h^{2/3} S_0^{1/2}$$

Where:

Q = Flowrate (cfs)

V = Velocity (ft/s)

k = 1.49 (BG units)

n = Manning's Coefficient (0.012)

R_h = Hydraulic Radius

A = Flow Area (sf)

 S_0 = Longitudinal Slope (ft/ft)

Using Manning's equation, a 6" pipe at a minimum slope of 0.5% can convey a flowrate of 0.43 cfs. The 100-year flowrate for the developed site is 0.139 cfs, therefore the pipe is sized sufficiently.

SECTION 6. SPECIAL REPORTS AND STUDIES

The following reports and assessments are provided for reference, under separate cover and for informational purposes only. Core Design takes no responsibility or liability for these reports, assessments, or designs as they were not completed under the direct supervision of Core Design.

Geotechnical Engineering Report (Provided under separate cover)

May 12, 2020

Prepared for:

Cheshire Short Plat

Prepared by:

Terra Associates, Inc.

12220 113th Avenue Ne, Ste. 130

Kirkland, WA 98034

Arborist Report (Provided under separate cover)

April 1, 2020

Prepared for:

Cheshire Short Plat

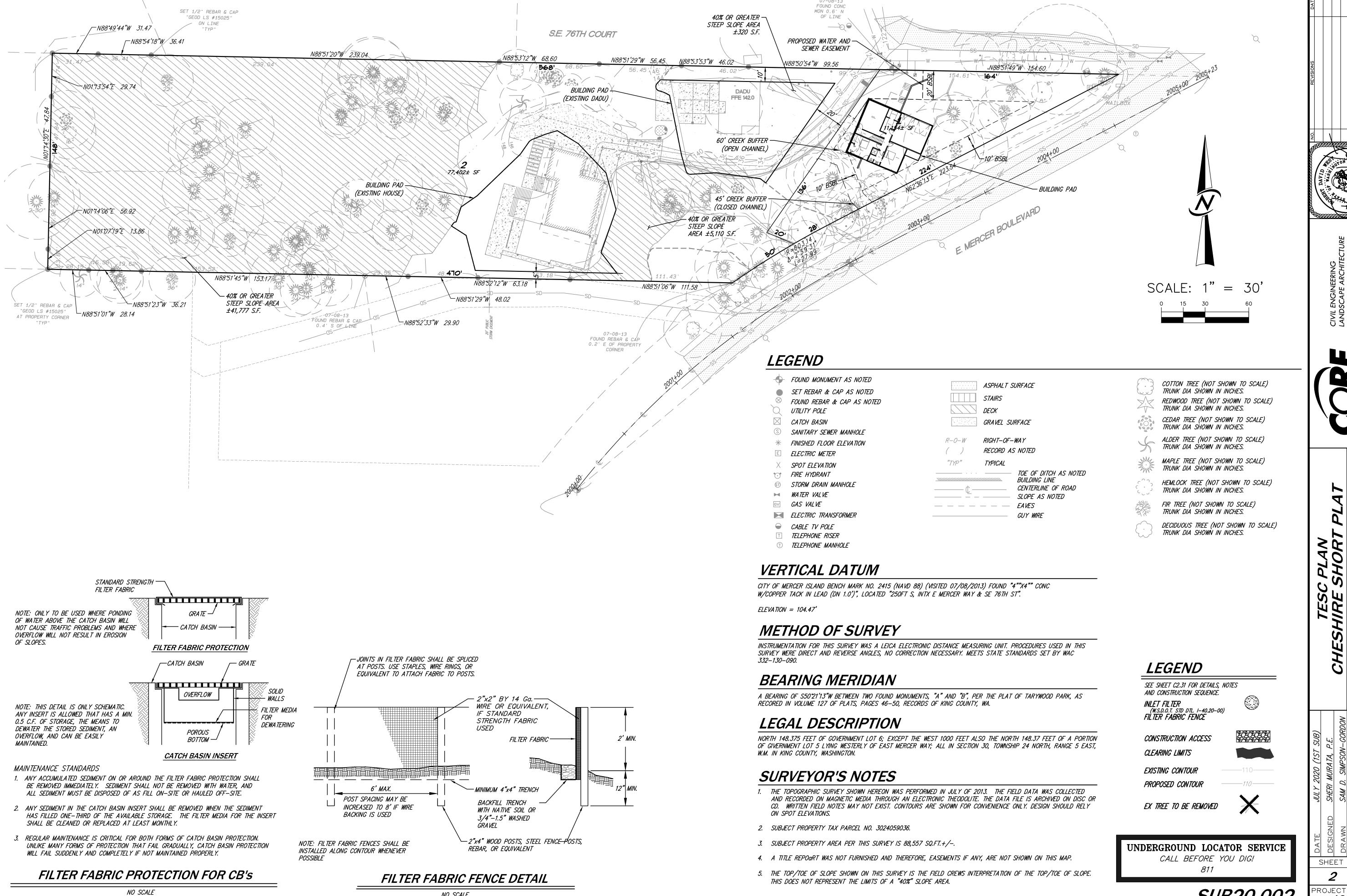
Prepared by:

A.B.C Consulting Arborists LLC

SECTION 7. OTHER PERMITS

There are no other permits required at this time.

SECTION 8. CSWPPP ANALYSIS AND DESIGN


A TESC plan has been prepared and submitted with the civil plans.

The site will utilize Volume II of the 2014 SMMWW for the erosion and sedimentation control design to reduce the discharge of sediment-laden runoff from the site. Clearing limits will be established prior to any earthwork on the project site. Perimeter protection will be provided by silt fencing along the downstream perimeter of the disturbed areas to limit the downstream transport of sediment to streams, wetlands and neighboring properties.

Dust control, if required, will be provided by a water truck. A Certified Erosion and Sediment Control Lead inspector will be present onsite during earthwork activities. The inspector shall determine frequency of watering of the project site and will authorize and direct any additional erosion and sediment control measures as needed during all construction activities.

The erosion control plan will be comprised of temporary measures (stabilized construction entrance, silt fence, etc.) as well as permanent measures (hydroseeding, etc.). In general, construction activities will be sequenced such that the site disturbance is minimized at all times. Runoff from the site will sheet flow across cleared areas and disperse into vegetated, gently sloped areas.

Please refer to the Temporary Erosion and Sediment Control Plan (TESC Plan) that has been prepared for this project, included on the following page as Figure 8-1: TESC Plan.

NO SCALE

SUB20-002

ROJECT NUMBEI *19205*

OF

SECTION 9. BOND QUANTITIES, FACILITY SUMMARIES, AND DECLARATION OF COVENANT

9.1 Bond Quantities

This will be provided prior to final engineering approval if necessary.

9.2 Facility Summaries

Not applicable.

9.3 Declaration of Covenant

Not applicable.

SECTION 10. OPERATIONS AND MAINTENANCE

The project is exempt from minimum requirement #9 Operations and Maintenance.

Appendix A

WWHM2012 PROJECT REPORT

General Model Information

Project Name: 19205 - WWHM

Site Name: Site Address:

City:

Report Date: 7/19/2021
Gage: Seatac

 Data Start:
 1948/10/01

 Data End:
 2009/09/30

 Timestep:
 15 Minute

Precip Scale: 1.00

Version: 2015/06/05

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use Acres C, Forest, Steep 0.26

Pervious Total 0.26

Impervious Land Use Acres

Impervious Total 0

Basin Total 0.26

Element Flows To:

Surface Interflow Groundwater

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use Acres C, Lawn, Steep 0.2

Pervious Total 0.2

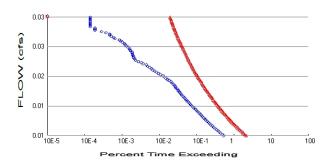
Impervious Land Use Acres ROOF TOPS FLAT 0.04 DRIVEWAYS STEEP 0.02

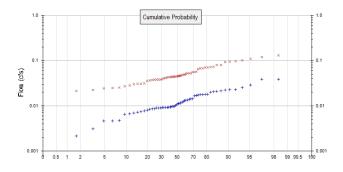
Impervious Total 0.06

Basin Total 0.26

Element Flows To:

Surface Interflow Groundwater


Routing Elements Predeveloped Routing



Mitigated Routing

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.26
Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0.2
Total Impervious Area: 0.06

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.011635

 5 year
 0.018533

 10 year
 0.023012

 25 year
 0.028428

 50 year
 0.032254

 100 year
 0.035892

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.046718

 5 year
 0.068151

 10 year
 0.08372

 25 year
 0.104931

 50 year
 0.121843

 100 year
 0.139706

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	0.013	0.080
1950	0.014	0.072
1951	0.023	0.044
1952	0.008	0.027
1953	0.006	0.024
1954	0.009	0.039
1955	0.017	0.038
1956	0.013	0.042
1957	0.012	0.053
1958	0.011	0.031

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2009	0.009 0.017 0.009 0.007 0.008 0.011 0.008 0.007 0.017 0.010 0.009 0.009 0.009 0.009 0.009 0.001 0.002 0.009 0.005 0.021 0.007 0.012 0.008 0.005 0.021 0.005 0.020 0.018 0.008 0.005 0.020 0.018 0.008 0.005 0.020 0.010 0.009 0.003 0.011 0.002 0.010 0.002 0.011 0.002 0.011 0.002 0.011 0.002 0.011 0.002 0.011 0.002 0.011 0.014 0.021 0.013 0.013 0.029 0.038 0.018	0.028 0.048 0.038 0.025 0.044 0.038 0.056 0.031 0.074 0.064 0.053 0.045 0.052 0.070 0.025 0.052 0.056 0.041 0.038 0.046 0.044 0.094 0.045 0.079 0.049 0.043 0.046 0.044 0.021 0.030 0.130 0.046 0.044 0.021 0.036 0.022 0.019 0.036 0.022 0.019 0.036 0.047 0.043 0.047 0.043 0.011 0.049 0.037 0.043 0.011 0.049 0.037 0.043 0.011 0.049 0.037 0.043 0.011 0.043 0.011 0.049 0.037 0.043 0.011 0.043 0.011 0.043 0.011 0.043 0.011 0.043 0.011 0.043 0.011 0.043 0.011 0.043 0.011 0.043 0.041 0.043 0.011	
--	---	--	--

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Predeveloped	
0.0385	0.1299
0.0384	0.1194
0.0290	0.1110
	Predeveloped 0.0385 0.0384

456789101234567890112345678901223456789013333333333456789045678901555555555555555555555555555555555555	0.0255 0.0227 0.0223 0.0214 0.0210 0.0204 0.0201 0.0182 0.0179 0.0177 0.0174 0.0171 0.0168 0.0167 0.0143 0.0143 0.0140 0.0135 0.0134 0.0131 0.0126 0.0120 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0110 0.0106 0.0096 0.0096 0.0096 0.0096 0.0091 0.0090	0.1009 0.0964 0.0939 0.0920 0.0795 0.0793 0.0740 0.0721 0.0703 0.0699 0.0677 0.0669 0.0643 0.0573 0.0556 0.0526 0.0525 0.0522 0.0515 0.0493 0.0491 0.0485 0.0493 0.0491 0.0485 0.0456 0.0452 0.0447 0.0444 0.0443 0.0443 0.0439 0.0435 0.0429 0.0428 0.0419 0.0413 0.0409 0.0387 0.0381 0.0380 0.0379 0.0371 0.0360 0.0379 0.0371 0.0360 0.0358 0.0313 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308 0.0308
53	0.0070	0.0300
54	0.0066	0.0283
55	0.0064	0.0268

Duration Flows

- . (()		B.5.4	5	.
Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0058	11407 10365	45387	397 402	Fail
0.0061 0.0064	9439	41730 38521	402	Fail Fail
0.0066	8630	35548	411	Fail
0.0069	7940	32832	413	Fail
0.0072	7272	30329	417	Fail
0.0074	6669	28019	420	Fail
0.0077	6098	25966	425	Fail
0.0080	5608	24084	429	Fail
0.0082	5150	22309	433	Fail
0.0085	4770	20777	435	Fail
0.0088	4410	19391	439	Fail
0.0090	4072	18080	444	Fail
0.0093	3764	16859	447	Fail
0.0096	3542	15716	443	Fail
0.0098	3285	14722	448	Fail
0.0101	3065	13787	449	Fail
0.0104	2866	12902	450	Fail
0.0106 0.0109	2669	12055 11319	451 456	Fail
0.0109	2479 2310	10605	456 459	Fail Fail
0.0112	2160	9974	461	Fail
0.0117	1971	9355	474	Fail
0.0120	1830	8913	487	Fail
0.0122	1686	8410	498	Fail
0.0125	1573	7925	503	Fail
0.0128	1459	7433	509	Fail
0.0130	1367	7050	515	Fail
0.0133	1269	6654	524	Fail
0.0136	1173	6271	534	Fail
0.0138	1104	5965	540	<u>F</u> ail
0.0141	1030	5668	550	Fail
0.0144	962	5356	556	Fail
0.0146 0.0149	906	5099	562 565	Fail
	851 802	4815 4567	565 560	Fail
0.0152 0.0154	802 750	4567 4336	569 578	Fail Fail
0.0157	730 715	4111	576 574	Fail
0.0160	680	3899	573	Fail
0.0162	638	3700	579	Fail
0.0165	606	3525	581	Fail
0.0168	572	3362	587	Fail
0.0170	542	3195	589	Fail
0.0173	503	3056	607	Fail
0.0176	469	2941	627	Fail
0.0178	435	2810	645	Fail
0.0181	391	2674	683	Fail
0.0184	352	2554	725	Fail
0.0186	321	2436	758 702	Fail
0.0189 0.0192	293 265	2323 2235	792 843	Fail
0.0192	230	2120	921	Fail Fail
0.0194	203	2023	996	Fail
0.0200	177	1939	1095	Fail
5.0200	111	1000	1000	i uii

1859 1780 1719 1651 1586 1528 1471 1416 1360 1302	1154 1262 1322 1411 1539 1608 1862 1994 2344 2657	Fail Fail Fail Fail Fail Fail Fail Fail
1224 1190 1146 1111	2781 2767 2728 2709	Fail Fail Fail Fail Fail Fail
1041 1003 961 927 897	2669 2786 2826 2726 2893	Fail Fail Fail Fail Fail Fail
827 807 781 749 723	3180 3228 3550 3745 4016	Fail Fail Fail Fail Fail
700 674 656 635 620	5000 5184 5963 6350 6200	Fail Fail Fail Fail Fail Fail
579 556 546 532 516	9650 13900 13650 13300 17200	Fail Fail Fail Fail Fail
486 477 464 454 440 425	16200 15900 15466 15133 14666 14166	Fail Fail Fail Fail Fail Fail Fail
	1780 1719 1651 1586 1528 1471 1416 1360 1302 1263 1224 1190 1146 1111 1073 1041 1003 961 927 897 865 827 807 781 749 723 700 674 656 635 620 601 579 556 546 532 516 501 486 477 464 454 440	1780 1262 1719 1322 1651 1411 1586 1539 1528 1608 1471 1862 1416 1994 1360 2344 1302 2657 1263 2745 1224 2781 1190 2767 1146 2728 1111 2709 1073 2682 1041 2669 1003 2786 961 2826 927 2726 897 2893 865 3089 827 3180 807 3228 781 3745 723 4016 700 5000 674 5184 656 5963 635 6350 620 6200 601 7512 579 9650 532 13300 516 17200 501 16700

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

19205 - WWHM 7/19/2021 10:35:27 AM Page 13

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Volume	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	7 _L	Basin 0.26ac	1			

Mitigated Schematic

		Daain	1			
	7	Dasin 0.26aa	1			
	7 _{[1}	0.26ac				
1						

Predeveloped UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                          END
                                2009 09 30
 START 1948 10 01
 RUN INTERP OUTPUT LEVEL
                        3 0
 RESUME 0 RUN 1
                                     UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
            <---->***
<-ID->
WDM
         26
            19205 - WWHM.wdm
MESSU
         25
             Pre19205 - WWHM.MES
         27
             Pre19205 - WWHM.L61
         28
             Pre19205 - WWHM.L62
             POC19205 - WWHM1.dat
         30
END FILES
OPN SEQUENCE
   INGRP
                   INDELT 00:15
              12
    PERLND
              501
     COPY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<----Title----
                               ->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
   1 Basin 1
                                                       1 2 30
                                   MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT
              NMN * * *
     1
   1
              1
 501
            1
                1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
               K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><-----Name----->NBLKS Unit-systems Printer ***
                              User t-series Engl Metr ***
                                    in out
                             1
  12 C, Forest, Steep
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
12 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ********* Print-flags **************** PIVL PYR
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC **********
12 0 0 4 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
12 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
            PWATER input info: Part 2 ***

179N INFILT LSUR SLSUR
400 0.15
 PWAT-PARM2
   <PLS >
                                                                  AGWRC
                                                        KVARY
   # - # ***FOREST LZSN INFILT
       0
                       4.5
                              0.08
                                                          0.5
                                         400
                                                  0.15
                                                                     0.996
 END PWAT-PARM2
 PWAT-PARM3
            PWATER input info: Part 3
                                             * * *
  <PLS >
   # - # ***PETMAX PETMIN INFEXP
12 0 0 2
                                        INFILD
                                                 DEEPFR
                                                           BASETP
                     0
                                                           0
  12
                                        2
                                                  0
                                                                    0
 END PWAT-PARM3
 PWAT-PARM4
             PWATER input info: Part 4
   <PLS >
                                         INTFW IRC 6 0.3
             CEPSC UZSN NSUR 0.2 0.3 0.35
                                                           LZETP ***
                                                        0.7
  12 0.2
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of \sqrt{1992} (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS
                                 UZS IFWS LZS AGWS
                                                                     GWVS
                                    0
  12
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><----Name---> Unit-systems Printer ***
   # - #
                            User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ****** Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
  IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
```

```
SCHEMATIC
                    <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
                          0.26 COPY 501 12
0.26 COPY 501 13
PERLND 12
PERLND 12
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
   # - #<----> User T-series Engl Metr LKFG
                                                           * * *
                                                           * * *
                                in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTEG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
   <PLS > ******* Print-flags ********** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
   # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                           KS
                                                 DB50
 <----><----><---->
 END HYDR-PARM2
   RCHRES Initial conditions for each HYDR section
   # ***
*** ac-ft
->
 <---->
                 <---><---><---> *** <---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
                                                  <Name> # # ***
<Name> # <Name> # tem strg<-factor->strg <Name> # #
      2 PREC ENGL 1 PERLND
2 PREC ENGL 1 IMPLND
                                        1 999 EXTNL PREC
WDM
                                 IMPLND 1 999 EXTNL PREC
WDM
```

 WDM
 1 EVAP
 ENGL
 0.76
 PERLND
 1 999 EXTNL
 PETINP

 WDM
 1 EVAP
 ENGL
 0.76
 IMPLND
 1 999 EXTNL
 PETINP

END EXT SOURCES

EXT TARGETS

<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***

END EXT TARGETS

MASS-LINK

<-Grp> <-Member->*** <Name> # #*** PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN

END MASS-LINK

END MASS-LINK 13

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                      END
                           2009 09 30
 START 1948 10 01
 RUN INTERP OUTPUT LEVEL
                     3 0
 RESUME 0 RUN 1
                               UNIT SYSTEM
END GLOBAL
FILES
<File> <Un#>
           <---->***
<-ID->
        26
           19205 - WWHM.wdm
MDM
MESSU
        25
           Mit19205 - WWHM.MES
        27
           Mit19205 - WWHM.L61
        28
           Mit19205 - WWHM.L62
           POC19205 - WWHM1.dat
        30
END FILES
OPN SEQUENCE
  INGRP
                 INDELT 00:15
             18
    PERLND
            4
7
    IMPLND
    TMPLND
    COPY
            501
    DISPLY
  END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<----Title---
                            ***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
     Basin 1
                                               1 2 30
  1
                              MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT
            NMN
     1
            1
 501
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
             K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><----Name---->NBLKS Unit-systems Printer ***
                         User t-series Engl Metr ***
                               in out
  18
                         1
      C, Lawn, Steep
                             1
                                1
                                   1
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  <PLS > ******** Active Sections ********************
  END ACTIVITY
 PRINT-INFO
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
```

```
KVARY
                                                           AGWRC
                                                   0.5
                                                           0.996
                                                  BASETP
                                                         AGWETP
                                                  0
  <PLS >
           PWATER input info: Part 4
           CEPSC UZSN NSUR
                                                  LZETP ***
                                   INTFW
                                             IRC
                                             0.3 0.25
  18 0.1
                                   6
                           0.25
                    0.15
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
         ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
                                  IFWS LZS AGWS
      # *** CEPS SURS UZS
                                                           GWVS
                      0
                                     0
                                             2.5
  18
              0
                              0
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
                         Unit-systems Printer ***
  <PLS ><---->
                        User t-series Engl Metr ***
                             in out ***
                             1 1 27
1 1 27
        ROOF TOPS/FLAT
                                         Ω
                          1
  7
        DRIVEWAYS/STEEP
                         1
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL
4 0 0 1 0 0 0
7 0 0 1 0 0
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
                                  1 9
```

4 0 0 4 0 0 0 7 0 0 4 0 0 0 0 9

END PRINT-INFO

IWAT-PARM1

<PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI 0 0 0 0 0

0

END IWAT-PARM1

0

IWAT-PARM2

7

IWATER input info: Part 2 <PLS > RETSC LSUR SLSUR NSUR 0.01 400 0.1 0.1 0.1 400 0.1 0.05

0

0 0

<----><---><---->

STCOR

KS DB50

HYDR-PARM2

END HYDR-PARM2

- # FTABNO LEN DELTH

```
HYDR-INIT
   RCHRES Initial conditions for each HYDR section
   # - # *** VOL Initial value of COLIND Initial value of OU.

for each possible exit for each possible exit
                                                Initial value of OUTDGT
                     <---><---><---><---><--->
  <---->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # ***
       2 PREC ENGL 1
                                      PERLND
                                             1 999 EXTNL
                                                         PREC
MOM
                                      IMPLND 1 999 EXTNL
MDM
       2 PREC
                 ENGL
                        1
                                                         PREC
                        0.76
                                              1 999 EXTNL PETINP
1 999 EXTNL PETINP
WDM
        1 EVAP
                 ENGL
                                      PERLND
                      0.76
WDM
       1 EVAP
                 ENGL
                                      IMPLND
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
WDM
COPY
                                            701 FLOW
       1 OUTPUT MEAN 1 1 48.4
                                                        ENGL REPL
     501 OUTPUT MEAN
                     1 1
                             48.4
                                      WDM
                                            801 FLOW
                                                        ENGL
COPY
END EXT TARGETS
MASS-LINK
<Volume> <-Grp> <-Member-><--Mult-->
                                                   <-Grp> <-Member->***
                                      <Target>
<Name>
                <Name> # #<-factor->
                                      <Name>
                                                          <Name> # #***
 MASS-LINK
                12
PERLND PWATER SURO
                          0.083333
                                      COPY
                                                   INPUT MEAN
 END MASS-LINK 12
 MASS-LINK
                13
PERLND PWATER IFWO
                          0.083333
                                      COPY
                                                   INPUT MEAN
 END MASS-LINK 13
 MASS-LINK
IMPLND IWATER SURO
                         0.083333
                                      COPY
                                                   INPUT MEAN
 END MASS-LINK 15
```

END MASS-LINK

END RUN

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2021; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

19205 - WWHM 7/19/2021 10:35:30 AM Page 28